Statistical and Computational Limits for Sparse Matrix Detection
نویسندگان
چکیده
This paper investigates the fundamental limits for detecting a high-dimensional sparse matrix contaminated by white Gaussian noise from both the statistical and computational perspectives. We consider p×pmatrices whose rows and columns are individually k-sparse. We provide a tight characterization of the statistical and computational limits for sparse matrix detection, which precisely describe when achieving optimal detection is easy, hard, or impossible, respectively. Although the sparse matrices considered in this paper have no apparent submatrix structure and the corresponding estimation problem has no computational issue at all, the detection problem has a surprising computational barrier when the sparsity level k exceeds the cubic root of the matrix size p: attaining the optimal detection boundary is computationally at least as hard as solving the planted clique problem. The same statistical and computational limits also hold in the sparse covariance matrix model, where each variable is correlated with at most k others. A key step in the construction of the statistically optimal test is a structural property for sparse matrices, which can be of independent interest.
منابع مشابه
Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملStatistical Limits of Convex Relaxations
Many high dimensional sparse learning problems are formulated as nonconvex optimization. A popular approach to solve these nonconvex optimization problems is through convex relaxations such as linear and semidefinite programming. In this paper, we study the statistical limits of convex relaxations. Particularly, we consider two problems: Mean estimation for sparse principal submatrix and edge p...
متن کاملOn the Statistical Limits of Convex Relaxations: A Case Study
Many high dimensional sparse learning problems are formulated as nonconvex optimization. A popular approach to solve these nonconvex optimization problems is through convex relaxations such as linear and semidefinite programming. In this paper, we study the statistical limits of convex relaxations. Particularly, we consider two problems: Mean estimation for sparse principal submatrix and edge p...
متن کاملاستفاده از نمایش پراکنده و همکاری دوربینها برای کاربردهای نظارت بینایی
With the growth of demand for security and safety, video-based surveillance systems have been employed in a large number of rural and urban areas. The problem of such systems lies in the detection of patterns of behaviors in a dataset that do not conform to normal behaviors. Recently, for behavior classification and abnormal behavior detection, the sparse representation approach is used. In thi...
متن کاملSharp Computational-Statistical Phase Transitions via Oracle Computational Model
We study the fundamental tradeoffs between computational tractability and statistical accuracy for a general family of hypothesis testing problems with combinatorial structures. Based upon an oracle model of computation, which captures the interactions between algorithms and data, we establish a general lower bound that explicitly connects the minimum testing risk under computational budget con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1801.00518 شماره
صفحات -
تاریخ انتشار 2018